Belastung aquatischer Ökosysteme mit Kunststoffmüll Möglichkeiten eines globalen und lokalen Monitorings mittels Satelliten-gestützter Methoden

Elizabeth C. Atwood*, J. Franke, S. Englhart, S. Piehl, M. Bochow, H. Imhof, F. Siegert, C. Laforsch

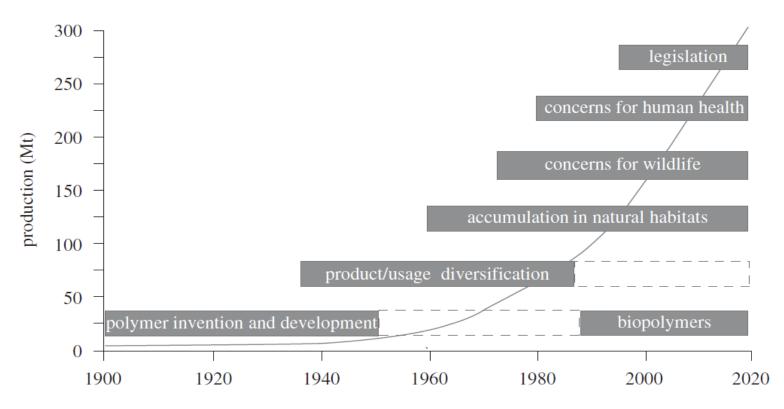
Nationalen Forum für Fernerkundung und Copernicus. "Copernicus Erfolgreich Nutzen", 03.–05.11.2015

* atwood@rssgmbh.de

Sentinels4marine plastic waste

Gefördert durch:

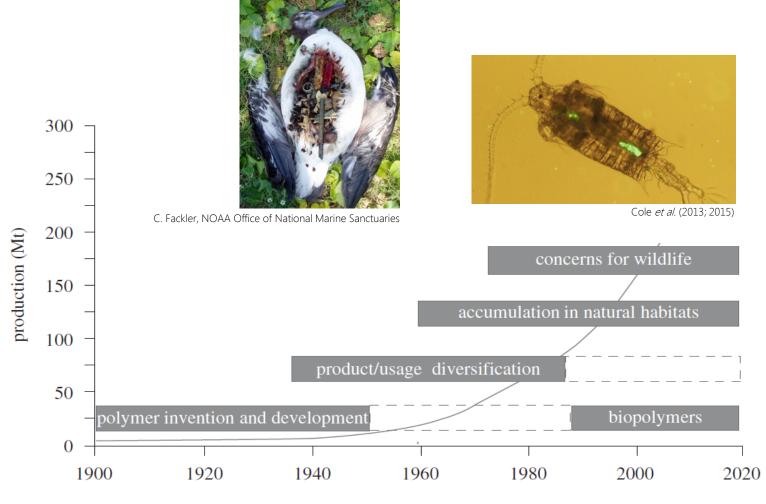
Raumfahrtmanagement


Bundesministerium für Wirtschaft und Energie

Hintergrund

Ziele Spektral-Methoden Flüsse & Küsten

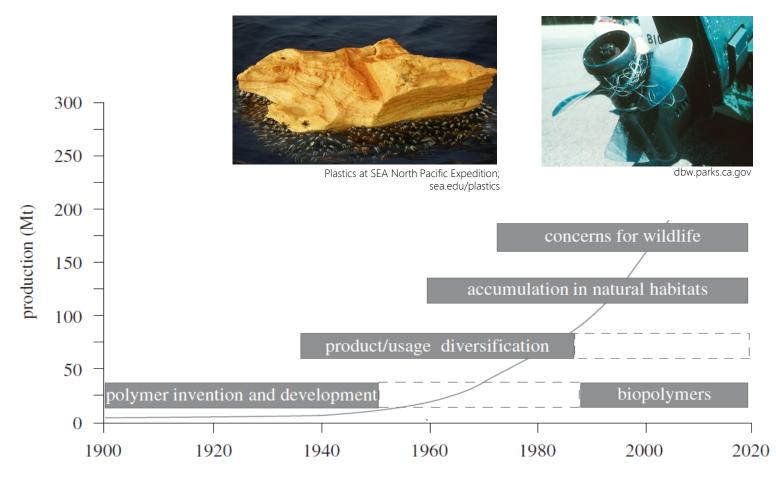
- Methoden
- Vorläufige Ergebnisse
- Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick



Hintergrund

Ziele Spektral-Methoden Flüsse & Küsten

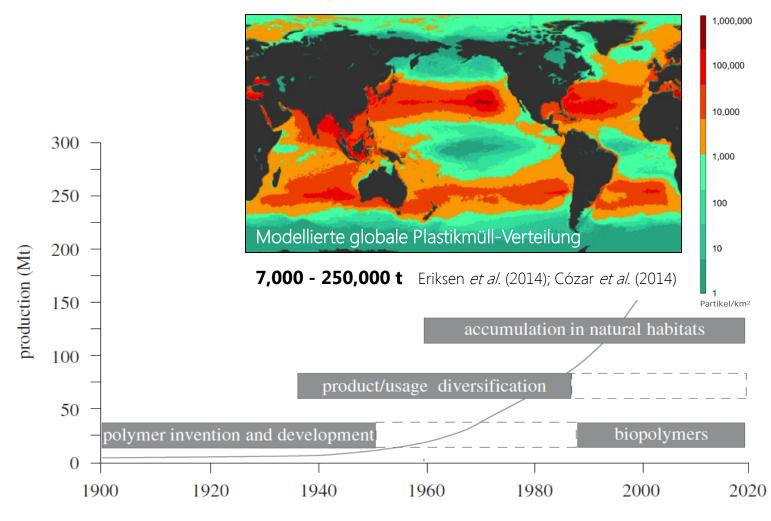
- Methoden
- Vorläufige Ergebnisse Ozeanwirbel
- Überblick
- Indikatoren
- Fazit & Ausblick



Hintergrund

Ziele Spektral-Methoden Flüsse & Küsten

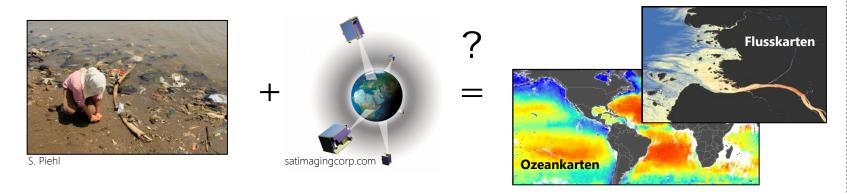
- Methoden
- Vorläufige Ergebnisse
 Ozeanwirbel
- Ozeanwirb
- Überblick
- IndikatorenFazit & Ausblick



Hintergrund

Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
- Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick



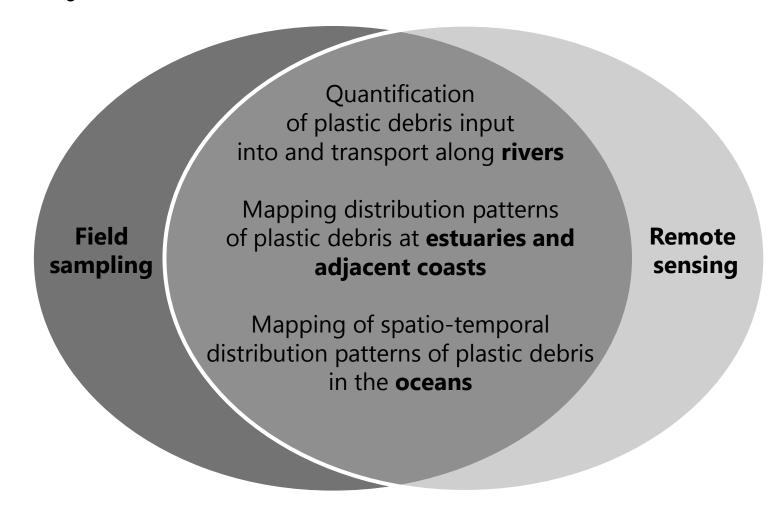
Aktuelle Plastik-Monitoringmethoden

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
 Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick

Flüsse	Kaum Daten Oft nach Sturmereignissen
Küsten	Strand Monitoringprogramme (z.B. Coastal Cleanup) Fokus: Makroplastiktteile (> 5mm)
Ozean	Netzzüge an der Oberfläche Strömungsmodelle + bekannte Plastikmüll-Quellen

Können fernerkundliche Methoden nutzbare Information liefern, um Monitoring-Programme zu verbessern?


Projektziele

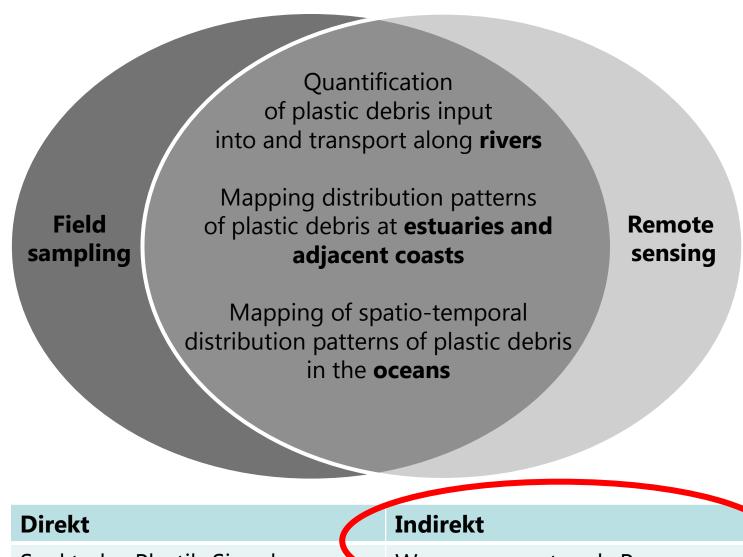
Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

Direkt	Indirekt	
Spektrales Plastik-Signal	Wasserparameter als Proxys	


Projektziele

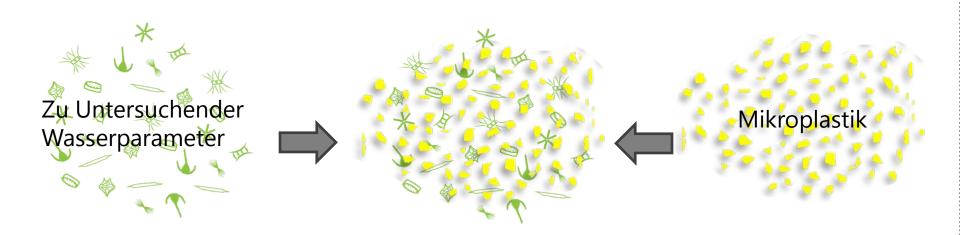
Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

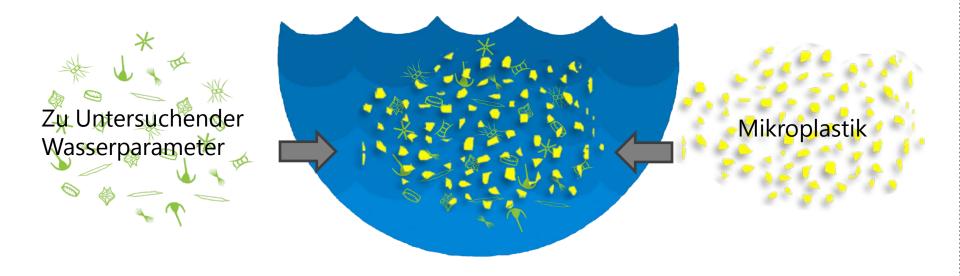
Spektrales Plastik-Signal


Wasserparameter als Proxys

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
- Ozeanwirbel
- Überblick
- Indikatoren Fazit & Ausblick

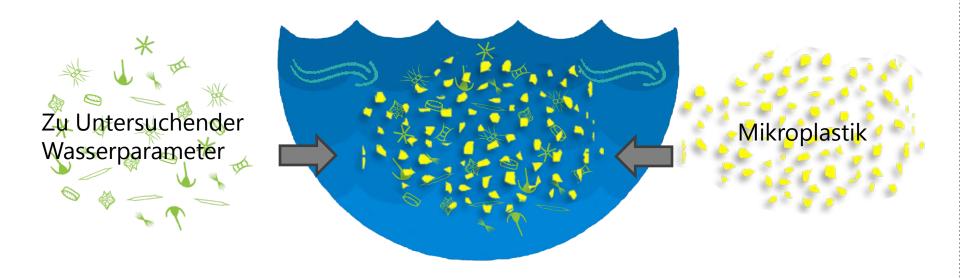
> Plastik wird durch die gleichen Mechanismen wie z.B. Schwebstoffe & Chlorophyll transportiert Kubota (1994), Howell et al. (2012), Pichel et al. (2012)



Hintergrund **Ziele** Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
 Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick

Plastik wird durch die gleichen Mechanismen wie z.B. Schwebstoffe & Chlorophyll transportiert Kubota (1994), Howell et al. (2012), Pichel et al. (2012)
 Wellen

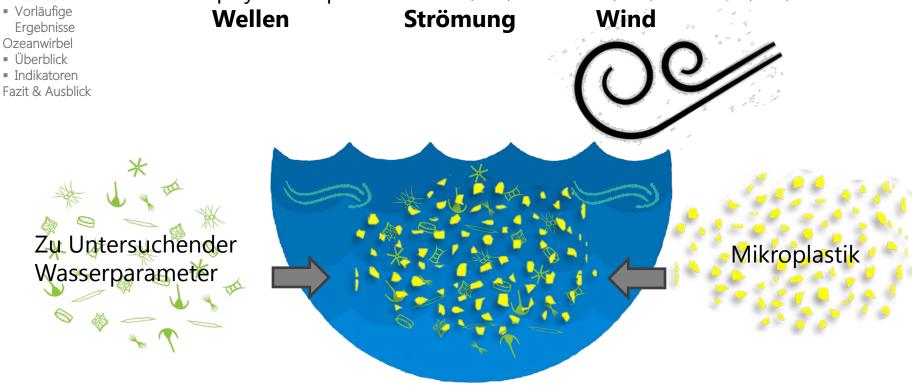


Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
 Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick

➤ Plastik wird durch die gleichen Mechanismen wie z.B. Schwebstoffe & Chlorophyll transportiert Kubota (1994), Howell et al. (2012), Pichel et al. (2012)

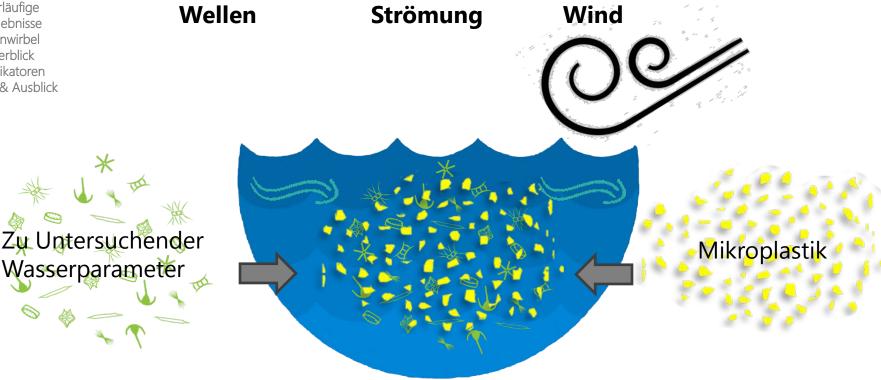
Wellen Strömung



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
- Indikatoren

> Plastik wird durch die gleichen Mechanismen wie z.B. Schwebstoffe & Chlorophyll transportiert Kubota (1994), Howell et al. (2012), Pichel et al. (2012)



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse Ozeanwirbel
- Überblick
- Indikatoren Fazit & Ausblick

Plastik wird durch die gleichen Mechanismen wie z.B. Schwebstoffe & Chlorophyll transportiert Kubota (1994), Howell et al. (2012), Pichel et al. (2012)

Ableitbare Wasserparameter

Chlorophyll-a, Gelb- & Schwebstoffe, Wasseroberflächentemperatur

Satelliten-basierte Proxys

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige
- Ergebnisse Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick

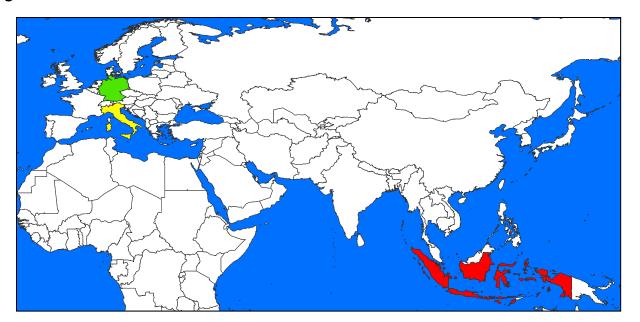
Fernerkundungs-Messungen als Hinweise von Plastikmüll-Sammelplätzen Pichel *et al.* (2007); Morishige *et al.* (2007)

Proxy		Publikation	Algorithmus Basis
Wasseroberflächen- temperatur	1 (SST)	Baban (1993)	Landsat-5 TM band 6 (10.40-12.50 µm)
Chlorophyll-a 4 Proxys	2 (Chl-a)	Dall'Olmo & Gitelson (2006); Gitelson <i>et al.</i> (1985)	R _{rs} (725 nm), R _{rs} (665 nm)
	3 (Chl-a)	Dall'Olmo & Gitelson (2006)	R _{rs} (671 nm), R _{rs} (710 nm), R _{rs} (740 nm)
	4 (Chl-a)	Gons (2002; 1999)	R _{rs} (704 nm), R _{rs} (672 nm), R _{rs} (776 nm)
	5 (Chl-a)	O'Reilly <i>et al.</i> (1998) (OC4 algorithm)	R _{rs} (443 nm), R _{rs} (555 nm), R _{rs} (490 nm), R _{rs} (512 nm)
Schwebstoffe (Suspended Particulate	6 (SPM)	Jørgensen (2000) (SISCAL SPM algorithm)	Subsurface irradiance reflectance at 555 nm
Matter) 2 Proxys	7 (SPM)	Dekker (1993)	Subsurface irradiance reflectance at 706 nm
Gelbstoff (colored Dissolved	8 (cDOM)	Kutser <i>et al.</i> (2005)	EO-1 ALI: band 2 (525-605 nm), band 3 (630-690 nm)
Organic Matter)	9 (cDOM)	Kowalczuk <i>et al.</i> (2005)	R _{rs} (490 nm), R _{rs} (590 nm)
3 Proxys	10 (cDOM)	Schwarz (2005)	R _{rs} (443 nm), R _{rs} (512 nm)

R_{rs}: Remote sensing reflectance

Projektziele: Flüsse

Hintergrund Ziele Spektral-


Spektral-Methoden

Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

<u>Flüsse</u>

Deutschland: Trave & Elbe

Italien: Po Flussdelta

Indonesien: Citarum

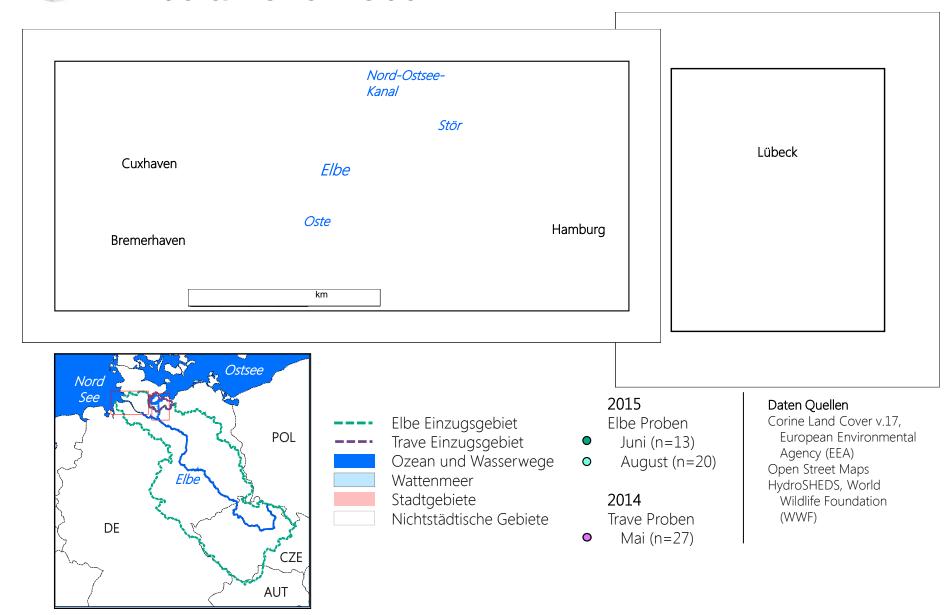
<u>Beprobungszeitraum</u>

2014 & 2015

Frühjahr 2016

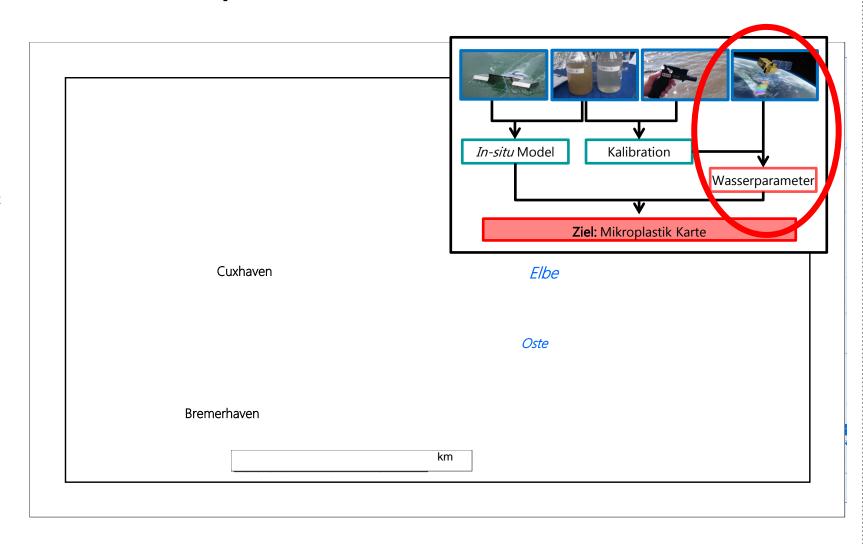
Sommer 2016

> Feldkampagnenziel: deckt jeweils Fluss und Mündung ab



Datenakquise & Modellierung

Elbe & Trave Proben

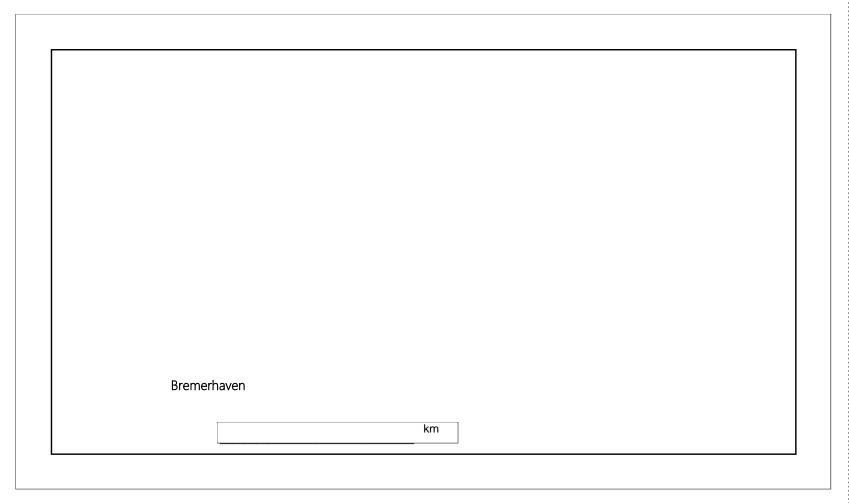


Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

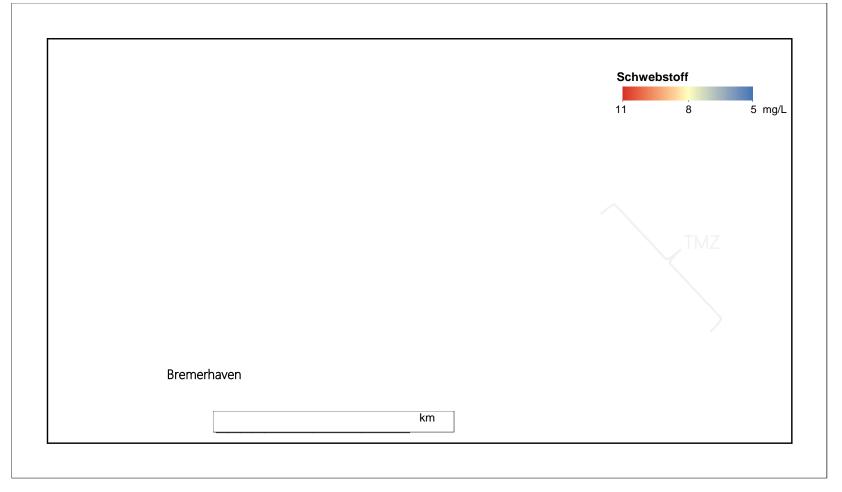
- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

RapidEye Aufnahme von 21.08.2015

Gleichzeitig zur Elbe Feldkampagne



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

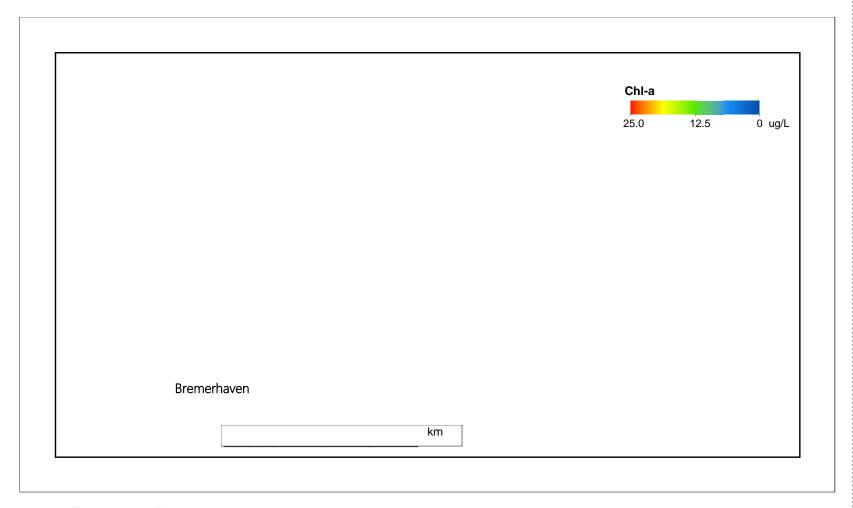
- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

Schwebstoff (SPM)

Erkennung Turbidity Maximum Zone (TMZ)



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

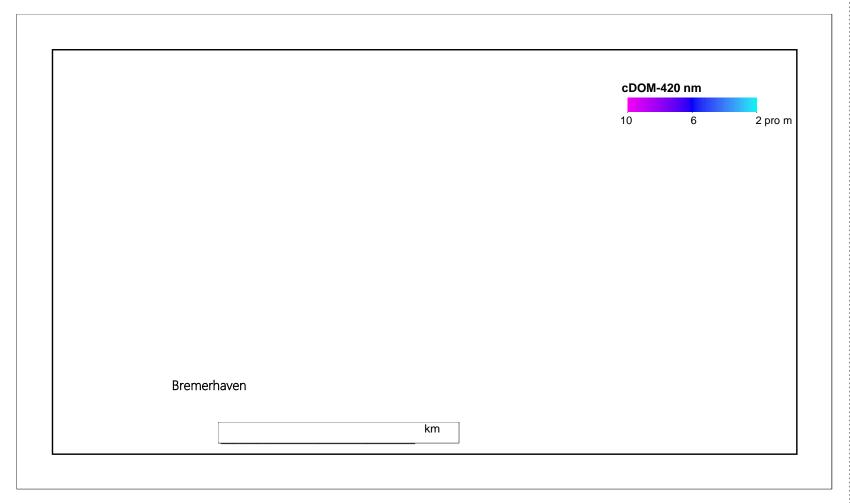
- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

Chlorophyll-a

> Schwer von SPM zu trennen, Methoden mit Rot/NIR verwendet



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

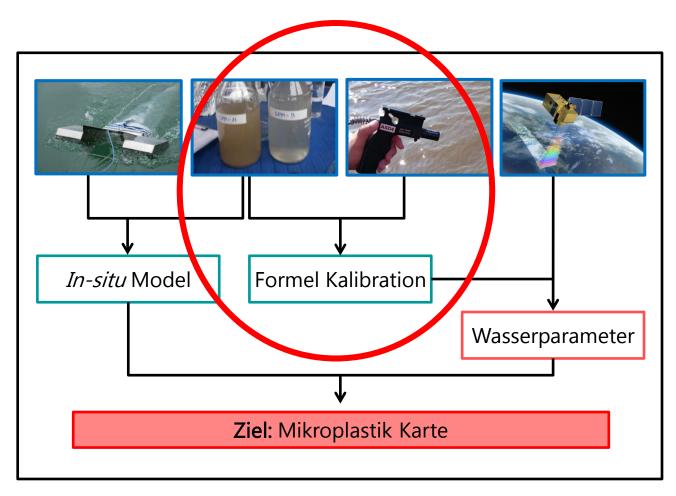
- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

Gelbstoffe (cDOM) Absorption beim 420 nm

Eintrag von Flüssen gut zu erkennen



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
 Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick

Kalibration der Proxyformeln anhand Spektrometer und in situ Daten (Trave)

Gelbstoff: cDOM-400 nm

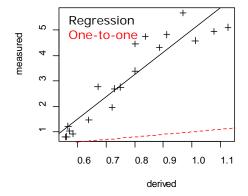
Hintergrund
Ziele
SpektralMethoden

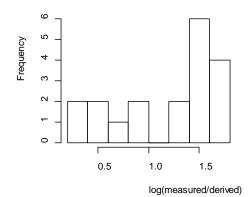
Flüsse & Küsten

Methoden

Vorläufige Ergebnisse

Ozeanwirbel


- Überblick
- IndikatorenFazit & Ausblick


Kalibration der Proxyformeln anhand Spektrometer und in situ Daten (Trave)

Gelbstoff: cDOM-400 nm

Literatur-Formel

r ² :	0.86
RMSE:	8.34
Bias:	6.91

Modellierte Werte (derived) vs in situ Daten (measured)

Log Error (*in situ*/modelliert)

Ausgewogenhiet oder Bias der Daten

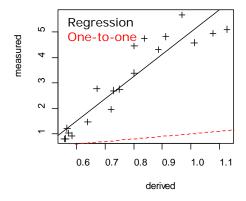
Hintergrund Ziele Spektral-Methoden

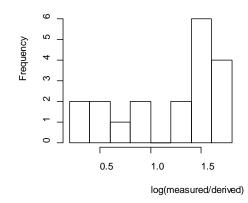
Flüsse & Küsten

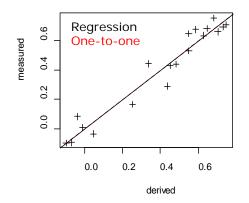
Methoden

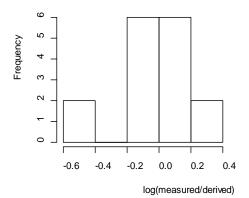
- Vorläufige Ergebnisse
- Ozeanwirbel
- ÜberblickIndikatore
- IndikatorenFazit & Ausblick

Kalibration der Proxyformeln anhand Spektrometer und in situ Daten (Trave)


Gelbstoff: cDOM-400 nm


Literatur-Formel


r²: 0.86 RMSE: 8.34 Bias: 6.91

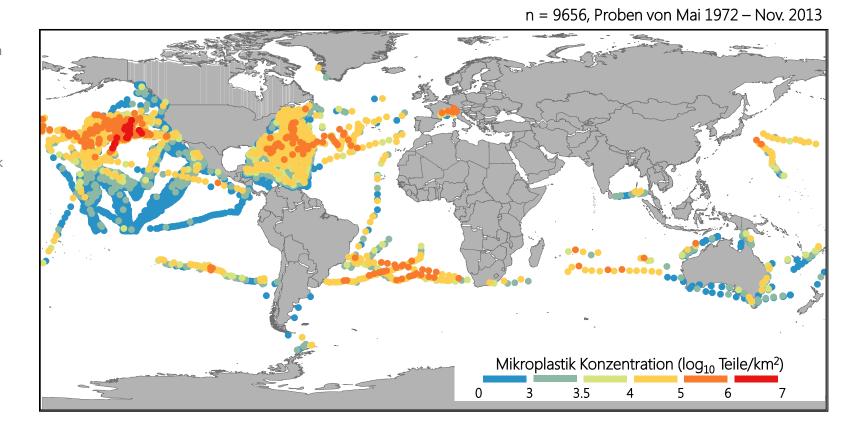

Kalibrierte Formel

r²: 0.94 RMSE: 0.07 Bias: 0.06

Modellierte Werte (derived) vs in situ Daten (measured)

Log Error (in situ/modelliert)

Ausgewogenheit (Bias) der Daten


Projektziel: Monitoring Meere

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

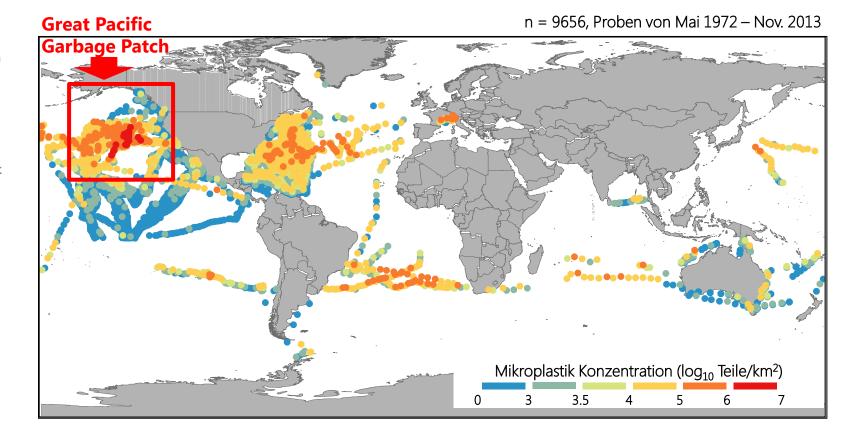
- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

<u>Datensätze</u>

Cózar *et al.* (2014) Eriksen *et al.* (2014) Goldstein *et al.* (2013) Law & Morét-Ferguson (2014) Law *et al.* (2010)


Projektziel: Monitoring Meere

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

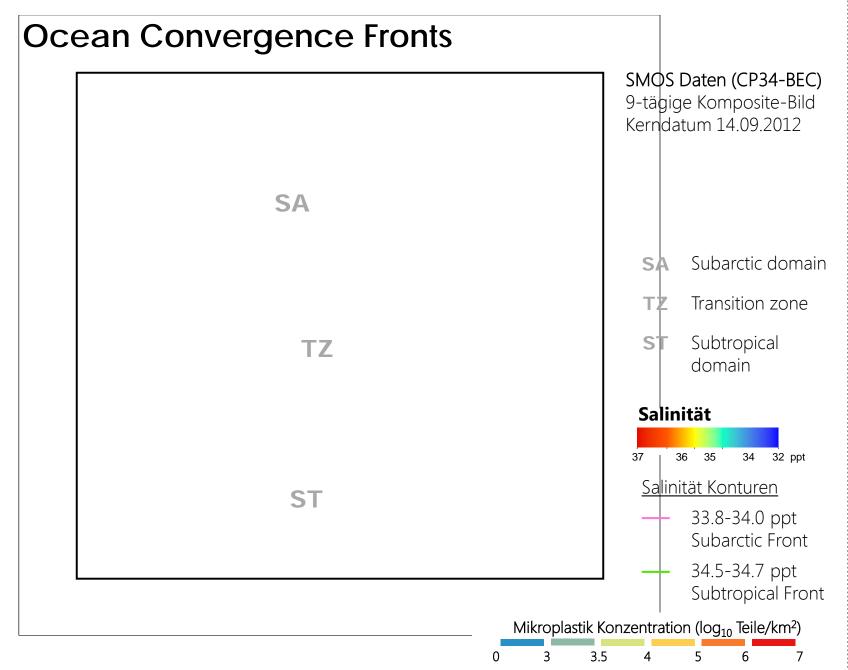
- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

<u>Datensätze</u>

Cózar *et al.* (2014) Eriksen *et al.* (2014) Goldstein *et al.* (2013) Law & Morét-Ferguson (2014) Law *et al.* (2010)



Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse

Ozeanwirbel

- Überblick
- IndikatorenFazit & Ausblick

Fazit und Ausblicke

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
- Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick

Flüsse

- Verbesserte Wasserparameter Karten durch kalibriete Algorithmen
- Plastikproben zur Zeit in Labor-Bearbeitung
- > In situ Datensatz wird erweitert durch Po und Citarum Beprobung in 2016
- Nutzungsmöglichkeiten: Sentinel-2 Daten bieten höhere räumliche und spektrale Auslösung, besonders in dem NIR Bereich

Meere

- Salinität potenziell bester Parameter, um Wirbel und Fronten zu erkennen
- Bedarf an mehr aktuellen öffentlichen Datensätzen.

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
 Ozeanwirbel
- Überblick
- IndikatorenFazit & Ausblick

Fazit und Ausblicke

Entwicklungsbedarf?

- > Bessere Abdeckung in dem SWIR Bereich
- ➤ Hyperspektrale Satelliten wir freuen uns sehr auf EnMAP

Hindernisse für eine vertiefte operationelle Nutzung von Fernerkundungsdaten?

Fehlendes Grundlagenwissen, in Forschung investieren!

Unterstützung des Bundes bei der Einführung der operationellen Nutzung von Copernicus?

- ➤ Investieren in Methoden-Entwicklung
- Link zwischen in situ und FE muss verstärkt werden

Weiterentwicklung der Copernicus-Dienste?

➤ IR Wassersignale sind sehr niedrig, besonders in SWIR, Bedarf an sensiblere Sensoren und besser spektrale Auslösung

Danke

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
- Ozeanwirbel
- Überblick
- Indikatoren Fazit & Ausblick

Gefördert von

Referenzen

Hintergrund Ziele Spektral-Methoden Flüsse & Küsten

- Methoden
- Vorläufige Ergebnisse
 Ozeanwirbel

Überblick

Indikatoren

Fazit & Ausblick

Baban, S. M. J. (1993) Int. J. Remote Sens. 14, 1247-1267.

Cole, M. et al. (2013) Environ. Sci. Technol. 47, 6646-55.

Cole, M. et al. (2015) Environ. Sci. Technol.

Cózar, A. et al. (2014) Proc. Natl. Acad. Sci. USA 17-19.

Dall'Olmo, G. & Gitelson, A. A. (2006) Appl. Opt. 45, 3577.

Dekker, A. G. Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. 237 (Proefschrift Vrije Universiteit Amsterdam, 1993).

Eriksen, M. et al. (2014) PLoS One 9(12), e111913.

Gitelson, A. et al. (1985) Remote Sens. 6, 28-36.

Goldstein, M. et al. (2013) PloS one 8(11), e80020.

Gons, H. J. J. (2002) Plankton Res. 24, 947-951.

Gons, H. J. (1999) Environ. Sci. Technol. 33, 1127-1132.

Howell et al. (2012) Mar. Pollut. Bull. 65, 16-22.

Jørgensen, P. V. Interpretation of remote sensing ocean colour in Danish coastal waters. (PhD Thesis. Institute of Geography, Univ. Copenhagen, Danemark, 2000).

Kowalczuk, P. & Olszewski, J. (2005) Int. J. Remote Sens. 26, 345-370.

Kubota, M. (1994) J. Phys. Oceanogr. 24, 1059-1064.

Kutser, T. et al. (2005) Remote Sens. 94, 535-540.

Law, K. L. et al. (2010) Science 329(5596), 1185-1188.

Law, K. & Morét-Ferguson, S. (2014) Environ. Sci. Technol. 48, 4732-4738.

Morishige, C. et al. (2007) Mar. Pollut. Bull. 54, 1162-9.

O'Reilly, J. E. et al. (1998) J. Geophys. Res. 103, 24937.

Pichel, W. G. et al. (2007) Mar. Pollut. Bull. 54, 1207-11.

Pichel et al. (2012) Mar. Pollut. Bull 65, 28-41.

Schwarz, J. (2005) Int. J. Remote Sens. 26, 283-293.

Thompson, R. C. et al. (2009) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 364, 1973–6.