FACTS AND FIGURES

By providing a set of key information services for a wide range of practical applications, Europe’s Copernicus programme has been put in place to make a step change in the way we manage our environment, understand and tackle the effects of climate change, and safeguard everyday lives. ESA is developing a fleet of innovative satellite missions – the Sentinels – to provide the accurate data and imagery that is central to this ambitious initiative.

While Sentinel-3 provides improved continuity of satellites such as Envisat and Spot, its wide-swath coverage data and multiple instruments measuring the same place at the same time means that this new mission is set to be the workhorse for Copernicus. The mission is the result of close collaboration between ESA, the European Commission, Eumetsat, France’s CNES space agency, industry, service providers and data users. The two Sentinel-3 satellites have been designed and built by a consortium of around 100 companies under the leadership of Thales Alenia Space, France.

Carrying a suite of state-of-the-art instruments, Sentinel-3 is the most complex of all the Sentinel missions. It will systematically measure Earth’s oceans, land, ice and atmosphere to monitor and understand large-scale global dynamics. It will provide critical near-realtime information for ocean and weather forecasting. This broad scope of data will allow European environmental policies to be administered with confidence.

The European Commission leads Copernicus. ESA is responsible for the space component, which includes the Sentinel satellites, contributing missions from other space agencies and third-party mission operators, a network of receiving stations and centres through which the data are made available. In the case of Sentinel-3, once the satellite is commissioned, it will be handed to Eumetsat to operate. ESA and Eumetsat manage the mission jointly, where ESA produces land products and Eumetsat marine products for application through the Copernicus services. Data from the Sentinels are used worldwide and are free of charge.
By providing a set of key information services for a wide range of practical applications, Europe's Copernicus programme has been put in place to make a step change in the way we manage our environment, understand and tackle the effects of climate change, and safeguard everyday lives. ESA is developing a fleet of innovative satellite missions – the Sentinels – to provide the accurate data and imagery that is central to this ambitious initiative.

While Sentinel-3 provides improved continuity of satellites such as Envisat and Spot, its wide-swath coverage data and multiple instruments measuring the same place at the same time mean that this new mission is set to be the workhorse for Copernicus. The mission is the result of close collaboration between ESA, the European Commission, Eumetsat, France's CNES space agency, industry, service providers and data users. The two Sentinel-3 satellites have been designed and built by a consortium of around 100 companies under the leadership of Thales Alenia Space.

Carrying a suite of state-of-the-art instruments, Sentinel-3 is the most complex of all the Sentinel missions. It will systematically measure Earth's oceans, land, ice and atmosphere to monitor and understand large-scale global dynamics. It will provide critical near-realtime information for ocean and weather forecasting. This broad scope of data will allow European environmental policies to be administered with confidence.

The European Commission leads Copernicus. ESA is responsible for the space component, which includes the Sentinel satellites, contributing missions from other space agencies and third-party mission operators, a network of receiving stations and centres through which the data are made available. In the case of Sentinel-3, once the satellite is commissioned, it will be handed to Eumetsat to operate. ESA and Eumetsat manage the mission jointly, where ESA produces land products and Eumetsat marine products for application through the Copernicus services. Data from the Sentinels are used worldwide and are free of charge.
By providing a set of key information services for a wide range of practical applications, Europe’s Copernicus programme has been put in place to make a step change in the way we manage our environment, understand and tackle the effects of climate change, and safeguard everyday lives. ESA is developing a fleet of innovative satellite missions – the Sentinels – to provide the accurate data and imagery that is central to this ambitious initiative.

While Sentinel-3 provides improved continuity of satellites such as Envisat and Spot, its wide-swath coverage data and multiple instruments measuring the same place at the same time means that this new mission is set to be the workhorse for Copernicus. The mission is the result of close collaboration between ESA, the European Commission, Eumetsat, France’s CNES space agency, industry, service providers and data users. The two Sentinel-3 satellites have been designed and built by a consortium of around 100 companies under the leadership of Thales Alenia Space.

Carrying a suite of state-of-the-art instruments, Sentinel-3 is the most complex of all the Sentinel missions. It will systematically measure Earth’s oceans, land, ice and atmosphere to monitor and understand large-scale global dynamics. It will provide critical near-realtime information for ocean and weather forecasting. This broad scope of data will allow European environmental policies to be administered with confidence.

The European Commission leads Copernicus. ESA is responsible for the space component, which includes the Sentinel satellites, contributing missions from other space agencies and third-party mission operators, a network of receiving stations and centres through which the data are made available. In the case of Sentinel-3, once the satellite is commissioned, it will be handed to Eumetsat to operate. ESA and Eumetsat manage the mission jointly, where ESA produces land products and Eumetsat marine products for application through the Copernicus services. Data from the Sentinels are used worldwide and are free of charge.
Primary productivity in the oceans forms the basis of marine life and also plays a role in the carbon cycle. While important for the marine food chain, some algae blooms can be toxic to humans, marine ecosystems and fisheries. The imaging spectrometer instrument on Sentinel-3 will monitor aquatic biological productivity and marine pollution. The same instrument can measure differences in the ‘colour’ of the land, allowing scientists to monitor the way land is being used and helping resource managers to plan. It also provides indices on the health of our vegetation, which is essential for agricultural practices and food production.

The temperature of the sea surface influences the weather and climate as well as ocean circulation patterns. For example, every few years a large swath of the Pacific Ocean along the equator warms, giving rise to El Niño, which alters rainfall patterns around the world. Sentinel-3’s infrared radiometer will provide precise global maps of sea-surface temperature for monitoring climate change, and ocean and weather forecasting. Over land, the instrument will be used, for example, to monitor urban heat islands, which is useful for planning authorities and healthcare systems.

The instrument also includes specific channels for tracking wildfires. This information will be used by weather and climate services for avoidance strategies and relief efforts.

The oceans are intrinsically linked to our weather and climate, are essential for global transport and provide a wealth of resources. Supplying a new generation of data products, Sentinel-3 is at the heart of operational oceanography. For example, its imaging spectrometer provides biogeochemical measurements to monitor the health of our oceans and its radar altimeter delivers measurements to derive ocean flow and surface waves, essential for safe marine operations. The mission will monitor sea-level change and diminishing Arctic sea ice.

The benefit Sentinel-3 will bring to practical applications is coupled with the new scientific understanding that will develop in unison – this will not only improve the way the data are used, but will also increase our understanding of our Earth system.

Sentinel-3 carries a precision synthetic aperture radar altimeter, an advanced infrared scanning radiometer, a wide-swath ocean and land imaging spectrometer and a microwave radiometer. These all build on the highly successful instruments carried on the Envisat and CryoSat satellites. This new generation of instruments will bring new data products to monitor our changing world so that informed decisions can be made. The mission is based on a constellation of twin satellites providing global coverage and optimal data delivery.

Next-Generation Technology

- **Colour of Life**
 - Images of Earth's oceans and coasts are created to show features in new and different ways.
 - These features are highlighted to show change over time, achieve optimal visibility, and reduce content redundancy, making it easier to see the details.

- **Oceans of Change**
 - The oceans are intrinsically linked to our weather and climate, are essential for global transport and provide a wealth of resources.

- **Feeling the Heat**
 - The temperature of the sea surface influences the weather and climate as well as ocean circulation patterns.

Sentinel-3 is an unprecedented step forward for operational oceanography. As well as providing continuous observations to advance ocean analysis and forecasting, it will improve more than 70% of the Copernicus Marine Environment Monitoring Service’s user products.

Pierre-Yves Le Traon

Copernicus Marine Environment Monitoring Service
Primary productivity in the oceans forms the basis of marine life and also plays a role in the carbon cycle. While important for the marine food chain, some algae blooms can be toxic to humans, marine ecosystems and fisheries. The imaging spectrometer instrument on Sentinel-3 will monitor aquatic biological productivity and marine pollution. The same instrument can measure differences in the 'colour' of the land, allowing scientists to monitor the way land is being used and helping resource managers to plan. It also provides indices on the health of our vegetation, which is essential for agricultural practices and food production.

The temperature of the sea surface influences the weather and climate as well as ocean circulation patterns. For example, every few years a large swath of the Pacific Ocean along the equator warms, giving rise to El Niño, which alters rainfall patterns around the world. Sentinel-3’s infrared radiometer will provide precise global maps of sea-surface temperature for monitoring climate change, and ocean and weather forecasting. Over land, the instrument will be used, for example, to monitor urban heat islands, which is useful for planning authorities and healthcare systems.

The instrument also includes specific channels for tracking wildfires. This information will be used by weather and climate services for avoidance strategies and relief efforts.

The oceans are intrinsically linked to our weather and climate, are essential for global transport and provide a wealth of resources. Supplying a new generation of data products, Sentinel-3 is at the heart of operational oceanography. For example, its imaging spectrometer provides biogeochemical measurements to monitor the health of our oceans and its radar altimeter delivers measurements to derive ocean flow and surface waves, essential for safe marine operations. The mission will monitor sea-level change and diminishing Arctic sea ice.

The benefit Sentinel-3 will bring to practical applications is coupled with the new scientific understanding that will develop in unison – this will not only improve the way the data are used, but will also increase our understanding of our Earth system.

Sentinel-3 carries a precision synthetic aperture radar altimeter, an advanced infrared scanning radiometer, a wide-swath ocean and land imaging spectrometer and a microwave radiometer. These all build on the highly successful instruments carried on the Envisat and CryoSat satellites. This new generation of instruments will bring new data products to monitor our changing world so that informed decisions can be made. The mission is based on a constellation of twin satellites providing global coverage and optimal data delivery.
Primary productivity in the oceans forms the basis of marine life and also plays a role in the carbon cycle. While important for the marine food chain, some algae blooms can be toxic to humans, marine ecosystems and fisheries. The imaging spectrometer instrument on Sentinel-3 will monitor aquatic biological productivity and marine pollution. The same instrument can measure differences in the ‘colour’ of the land, allowing scientists to monitor the way land is being used and helping resource managers to plan. It also provides indices on the health of our vegetation, which is essential for agricultural practices and food production.

The temperature of the sea surface influences the weather and climate as well as ocean circulation patterns. For example, every few years a large swath of the Pacific Ocean along the equator warms, giving rise to El Niño, which alters rainfall patterns around the world. Sentinel-3’s infrared radiometer will provide precise global maps of sea-surface temperature for monitoring climate change, and ocean and weather forecasting. Over land, the instrument will be used, for example, to monitor urban heat islands, which is useful for planning authorities and healthcare systems.

The instrument also includes specific channels for tracking wildfires. This information will be used by weather and climate services for avoidance strategies and relief efforts.

The oceans are intrinsically linked to our weather and climate, are essential for global transport and provide a wealth of resources. Supplying a new generation of data products, Sentinel-3 is at the heart of operational oceanography. For example, its imaging spectrometer provides biogeochemical measurements to monitor the health of our oceans and its radar altimeter delivers measurements to derive ocean flow and surface waves, essential for safe marine operations. The mission will monitor sea-level change and diminishing Arctic sea ice.

The benefit Sentinel-3 will bring to practical applications is coupled with the new scientific understanding that will develop in unison – this will not only improve the way the data are used, but will also increase our understanding of our Earth system.

Sentinel-3 carries a precision synthetic aperture radar altimeter, an advanced infrared scanning radiometer, a wide-swath ocean and land imaging spectrometer and a microwave radiometer. These all build on the highly successful instruments carried on the Envisat and CryoSat satellites. This new generation of instruments will bring new data products to monitor our changing world so that informed decisions can be made. The mission is based on a constellation of twin satellites providing global coverage and optimal data delivery.
Primary productivity in the oceans forms the basis of marine life and also plays a role in the carbon cycle. While important for the marine food chain, some algae blooms can be toxic to humans, marine ecosystems and fisheries. The imaging spectrometer instrument on Sentinel-3 will monitor aquatic biological productivity and marine pollution. The same instrument can measure differences in the ‘colour’ of the land, allowing scientists to monitor the way land is being used and helping resource managers to plan. It also provides indices on the health of our vegetation, which is essential for agricultural practices and food production.

The temperature of the sea surface influences the weather and climate as well as ocean circulation patterns. For example, every few years a large swath of the Pacific Ocean along the equator warms, giving rise to El Niño, which alters rainfall patterns around the world. Sentinel-3’s infrared radiometer will provide precise global maps of sea-surface temperature for monitoring climate change, and ocean and weather forecasting. Over land, the instrument will be used, for example, to monitor urban heat islands, which is useful for planning authorities and healthcare systems.

The instrument also includes specific channels for tracking wildfires. This information will be used by weather and climate services for avoidance strategies and relief efforts.

The oceans are intrinsically linked to our weather and climate, are essential for global transport and provide a wealth of resources. Supplying a new generation of data products, Sentinel-3 is at the heart of operational oceanography. For example, its radar altimeter delivers measurements to monitor ocean flow and surface waves, essential for safe marine operations. The mission will monitor sea-level change and diminishing Arctic sea ice.

The benefit Sentinel-3 will bring to practical applications is coupled with the new scientific understanding that will develop in unison – this will not only improve the way the data are used, but will also increase our understanding of our Earth system.

Sentinel-3 carries a precision synthetic aperture radar altimeter, an advanced infrared scanning radiometer, a wide-swath ocean and land imaging spectrometer and a microwave radiometer. These all build on the highly successful instruments carried on the Envisat and CryoSat satellites. This new generation of instruments will bring new data products to monitor our changing world so that informed decisions can be made. The mission is based on a constellation of twin satellites providing global coverage and optimal data delivery.

OCEANS OF CHANGE

- **COLOUR OF LIFE**
 - COLOUR OF LIFE
 - FEELING THE HEAT
 - NEXT-GENERATION TECHNOLOGY
 - OCEANS OF CHANGE

Sentinel-3 is an unprecedented step forward for operational oceanography. As well as providing continuous observations to advance ocean analysis and forecasting, it will improve more than 70% of the Copernicus Marine Environment Monitoring Service’s user products.”

Pierre-Yves Le Traon
Copernicus Marine Environment Monitoring Service

GLOBAL FIRE MAPPING

- **SRAL**
 - Synthetic Aperture Radar Altimeter
 - Measures sea-surface height, ocean surface waves, sea-ice extent and height, and the height of large inland rivers and lakes

- **SLSTR**
 - Sea and Land Surface Temperature Radiometer
 - Delivers very accurate temperature measurements of Earth’s surface at 1000 m resolution and includes two channels for monitoring wildfires

- **OLCI**
 - Ocean and Land Colour Instrument
 - Has 21 bands and a spatial resolution of 300 m per pixel to map changing land cover and to monitor ocean biology and water quality

- **MWR**
 - Microwave Radiometer
 - Used to correct measurements from the radar altimeter affected by water vapour in the atmosphere

FELTING THE HEAT

- **DORIS**
 - Satellite to measure precise orbit of satellite
 - Able to measure sea-surface height accurately
 - Small laser retroreflector
 - Measures sea surface height

Sentinel-3 is an unprecedented step forward for operational oceanography. As well as providing continuous observations to advance ocean analysis and forecasting, it will improve more than 70% of the Copernicus Marine Environment Monitoring Service’s user products.”

Pierre-Yves Le Traon
Copernicus Marine Environment Monitoring Service
FACTS AND FIGURES

While Sentinel-3 provides improved continuity of satellites such as Envisat and Spot, its wide-swath coverage data and multiple instruments measuring the same place at the same time means that this new mission is set to be the workhorse for Copernicus. The mission is the result of close collaboration between ESA, the European Commission, Eumetsat, France’s CNES space agency, industry, service providers and data users. The two Sentinel-3 satellites have been designed and built by a consortium of around 100 companies under the leadership of Thales Alenia Space, France.

Carrying a suite of state-of-the-art instruments, Sentinel-3 is the most complex of all the Sentinel missions. It will systematically measure Earth’s oceans, land, ice and atmosphere to monitor and understand large-scale global dynamics. It will provide critical near-realtime information for ocean and weather forecasting. This broad scope of data will allow European environmental policies to be administered with confidence.

The European Commission leads Copernicus. ESA is responsible for the space component, which includes the Sentinel satellites, contributing missions from other space agencies and third-party mission operators, a network of receiving stations and centres through which the data are made available. In the case of Sentinel-3, once the satellite is commissioned, it will be handed to Eumetsat to operate. ESA and Eumetsat manage the mission jointly, where ESA produces land products and Eumetsat marine products for application through the Copernicus services. Data from the Sentinels are used worldwide and are free of charge.