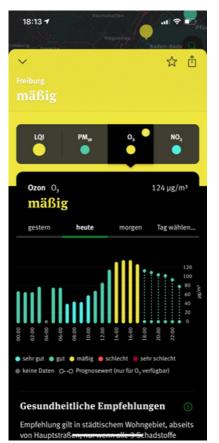
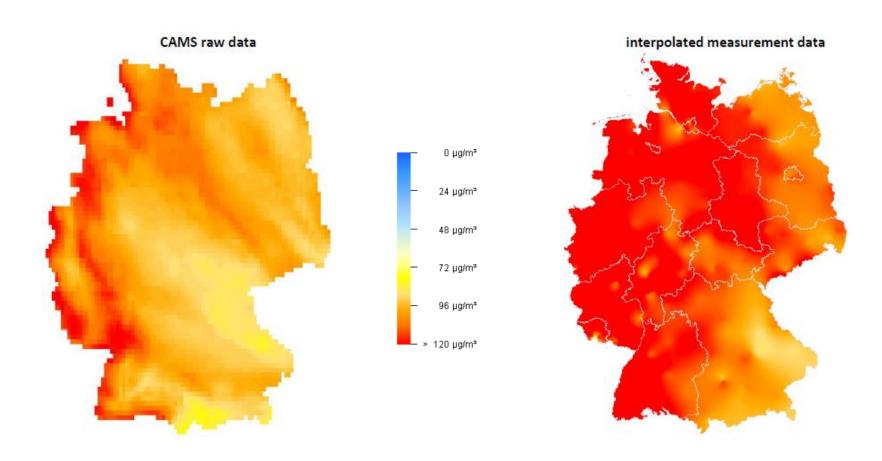

Copernicus Forum 2022 - Fachsession CAMS


Entwicklung verbesserter Luftqualitätsvorhersagen für Deutschland (UBA-DWD-Projekt)

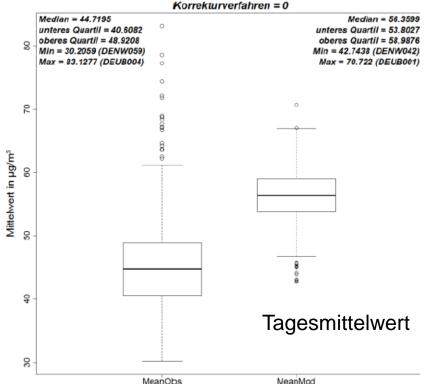
Ute Dauert Fachgebiet II 4.2 Beurteilung der Luftqualität

Motivation:

Tagesaktuelle Information der Öffentlichkeit (Web & App)

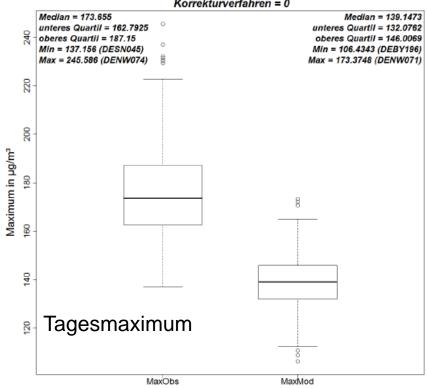


Aktuelle Belastung und Vorhersage – Gesundheitsrelevanz Vorhersage von Grenz- und Schwellenwertüberschreitung


CAMS Ozonprognose für Deutschland

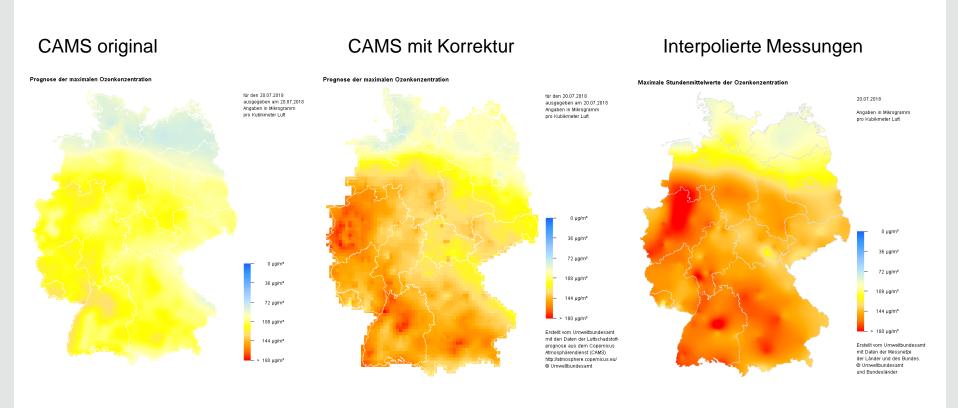
8-Stunden Ozon-Maximum am 25.08.2016

Evaluierung der CAMS Ozonprognose für Deutschland 2016, 1. Prognosetag


O3 1SMW Mittelwert von Messdaten & Modelldaten aller Stationen 1. Prognosetag (2016-01-01 bis 2017-01-01)

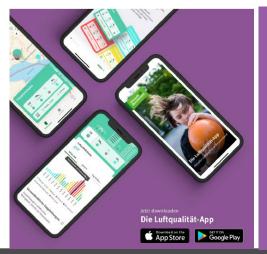
O3 1SMW

Maximum von Messdaten & Modelldaten aller Stationen
1. Prognosetag (2016-01-01 bis 2017-01-01)


Korrekturverfahren = 0

- Überschätzung der mittleren Konzentration
- ▶ Unterschätzung des Tagesmaximums → Überschreitungen von Schwellenwerten

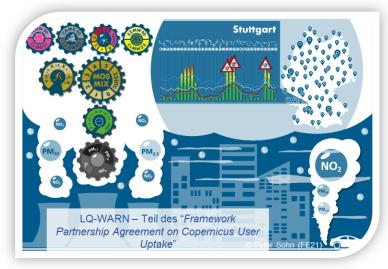
Fehlerkorrektur- Ergebnisse für Ozonprognose


Interpolation der ermittelten Korrektur in die Fläche und Anwendung auf die originale CAMS-Prognose

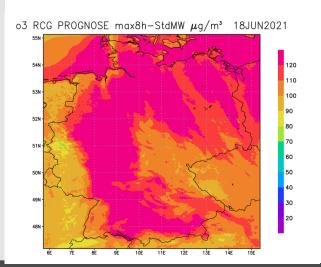
Anwendung in der UBA App "Luftqualität"

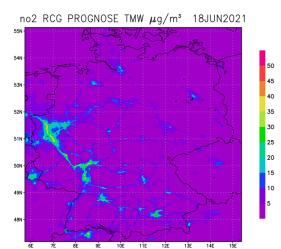
Integration der korrigierten Ozon-Prognose :

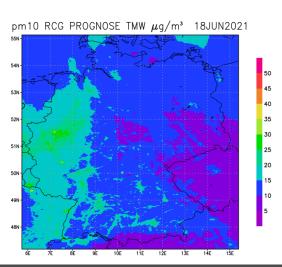
- ➤ Prognose für Ozon-Hintergrundstationen
- > stündlich
- ▶ für den aktuellen und den nächsten Tag
- > Push bei Überschreitung 120 μg/m³ für empfindliche
- Personen, 180 μg/m³ an alle Personen
- > seit Mai 2020 verfügbar (iOS und Android)



UBA-DWD-Projekt LQ WARN

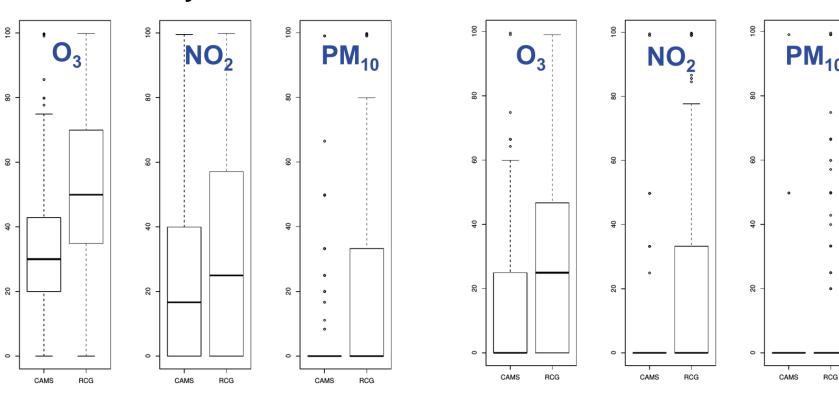

Entwicklung eines Downstreamservices (UBA) für Deutschland mit nachgeschalteter Model Output Statistics (DWD)


- → CAMS-Prognosen als Randbedingung für Deutschlandmodell REM-CALGRID (RCG) → Fläche
- → MOS-Anwendung auf Modellergebnis von REM-CALGRID (RCG) und direkt auf CAMS-Prognosen → Punkt
- → Kombination beider Verfahren?
- → Ziel: operationeller Betrieb mit verbesserten Vorhersagen (NO₂, O₃, PM₁₀ und PM_{2.5}) für Öffentlichkeitsinfo → App(s)



Kann ein Downscaling der CAMS Vorhersagen + Verwendung lokaler Emissionsdaten die Vorhersagegüte steigern ?

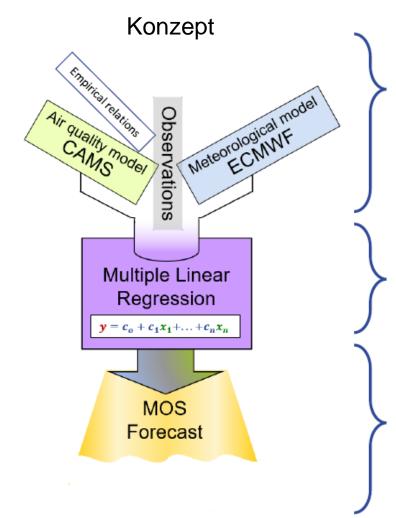
- Anwendung des REM-CALGRID (RCG) Modelles zur Vorhersage der Schadstoffe NO₂, O₃,
 PM₁₀ und PM_{2.5}
- Antriebsdaten CAMS LQ-Europavorhersage mit 0.1° Auflösung + DWD ICON-EU
- Lokale, räumlich verteilte Emissionen aus UBA Tool GRETA
- CAMS Schnittstelle + RCG Anpassung und Setup (Entwicklung mit externer Unterstützung)
- Zielauflösung RCG Vorhersage 2x2 km², stündliche Schadstoffkonzentrationen bis +72h
- Testbetrieb zur Erstellung täglicher 3-Tagesvorhersagen seit 26. Mai 2021



Validierung RCG LQ-Vorhersage

Probability Of Detection

False Alarm Rate



Validationszeitraum 01. Januar 2021 – 15. September 2021, Prognosetag 1, Boxplot über Score aller verfügbaren Stationen

Höhere Probability of Detection im RCG gegenüber CAMS für alle betrachteten Schadstoffe (O3, NO2, PM10), aber auch höhere False-Alarm-Rate Bias im RCG deutlich gegenüber CAMS reduziert

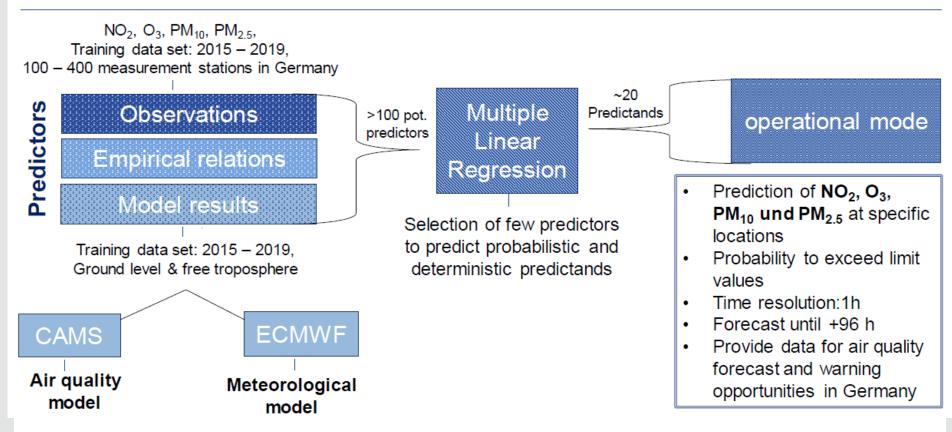
^

Mögliche Prädiktoren

≡ unabhängige Parameter die zum Berechnen der Vorhersage verwendet werden

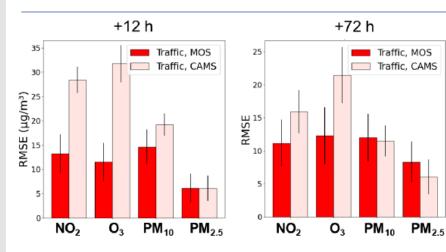
Der Prädiktand wird über einen linearen Zusammenhang zu verschiedenen Prädiktoren bestimmt

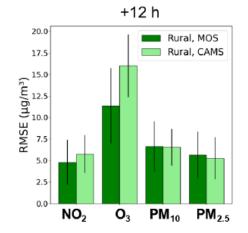
- 3 10 Prädiktoren werden aus ~ 200 ausgewählt
- Minimierung des Root Mean Square Error (RMSE) zwischen Prädiktand und Beobachtung

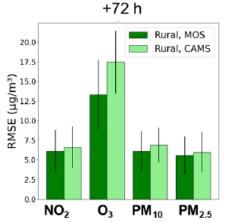

Predictands

- ≡ Parameter der Vorhergesagt wird
- NO₂, O₃, PM₁₀ und PM_{2.5} Massenkonzentrationen an verschiedenen Orten
- Wahrscheinlichkeit Grenzwerte zu überschreiten
- Zeitauflösung:1h
- Vorhersage bis zu +96 h

Setup of the forecast system







First Verification – Winter, several species

- Application of MOS improves prediction for all species
- Especially for PM₁₀ and PM_{2.5} is the improvement of the prediction larger in the first hours of forecast

Zusammenfassung

- Ziel: deterministische und probabilistische Punktvorhersage für NO₂, O₃, PM₁₀ und PM_{2.5}
- Implementieren eines Wochentagprädiktors hat vor allem bei NO₂ zur Verbesserung der MOS-Vorhersage geführt
- → Insbesondere für verkehrsnahe Stationen wird die Vorhersage der Schadstoffkonzentration für alle Parameter durch Anwendung von MOS im Vergleich zu CAMS verbessert unabhängig von der Jahreszeit
 - → Im Fall von NO₂ wird die Schadstoffkonzentration von CAMS eher unterschätzt und von MOS eher überschätzt.
- Erste Prädiktoranalysen zeigen, dass für die MOS-Vorhersage vorwiegend Messwerte und MOS-Vorhersagen für vorherige Stunden genutzt werden. Die Wahl weiterer Prädiktoren ist logisch nachvollziehbar.
 - → Für NO₂ (Gas mit eindeutiger Quelle) werden des Weiteren Wochentags-, Wind- und CAMS-Prädiktoren verwendet
 - → Für PM_{2.5} (Partikel mit vielen Quellen) werden stattdessen CAMS-Prädiktoren und diverse meteorologische Parameter verwendet.

CAMS-Downstream Projekt – anstehende Arbeiten

Evaluierung aller verfügbaren Schadstoffprognosen

- ➤ CAMS mit einfacher Korrektur (Messwerte der letzten 3 Tage) bisher im UBA verwendet
- > RCG angetrieben mit CAMS Entwicklung UBA im Projekt
- ➤ CAMS mit MOS Entwicklung DWD im Projekt
- > RCG mit CAMS und nachgeschaltet MOS Entwicklung DWD im Projekt
- → Scores: RMSE, BIAS, Pearson Korrelationskoeffizient, Standardabweichung, Heidke-Skill-Score (HSS), Probability of Detection (POD), False Alarm Ratio (FAR), Ranked Probability Score, Hitrate im Zeitfenster
- → Bewertung von Nebenkriterien ()Rechenzeiten, Fortschreibung, neue Stationen, Schließung von Stationen...)
- → Auswahl des finalen Verfahren für den operationellen Betrieb

MOS – vom Punkt in die Fläche

Umsetzung in der (den) Apps

Unsere Wünsche/Anforderungen an CAMS

Entwicklungsbedarf

- Weitere Verbesserung der Vorhersagequalität und -auflösung
- Weitere Verbesserung der Emissionen (zeitlichen Verteilung, Mengen und räumlicher Verteilung)
- Ggf. top-down Emissionsdaten einzelner Mitgliedsstaaten berücksichtigen (z.B. Greta räumlich und zukünftig zeitlich verteilte Emissionen)

Nutzung/Zugang zu den CAMS-Prognosen

- dauerhafte Sicherstellung der Prognosen und zuverlässiger operationeller Betrieb
- (möglichst) keine Format- und Metadatenänderungen (keine Änderung der Schnittstellen)
- Im Falle von Änderungen → rechtzeitige Benachrichtigung bzw. Möglichkeit die Änderungen vorab mit unserem System zu testen

Umwelt 🎲 **Bundesamt**

Vielen Dank für Ihre Aufmerksamkeit

Ute Dauert

ute.dauert@uba.de

Projektbeteiligte:

Sabine Robrecht DWD)

Stefan Gilge (DWD)

Andreas Lambert (DWD)

Anke Kniffka (DWD)

Sebastian Trepte (DWD)

Robert Osinski (ehem. UBA)

Stephan Nordmann (UBA)

Stefan Feigenspan (UBA)

Sven Schulte (UBA)

Andrea Mues (UBA)

