

Nutzung von GMES Diensten in der öffentlichen Verwaltung

Studie zur zukünftigen Nutzung der GMES-Daten und –Diensten in Bayern

beauftragt vom Bayerischen Staatsministerium für Wirtschaft, Infrastruktur,
 Verkehr und Technologie (StMWIVT) –

Dr. Uwe Voges con terra GmbH

Hintergrund

- GAF AG, Esri Deutschland und con terra haben Mitte 2012 eine Studie zur zukünftigen Nutzung von GMES-Daten und -Diensten im staatlichen Bereich in Bayern durchgeführt:
 - für das Bayerische Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie (StMWIVT)
- Ausgangssituation war die Erkenntnis, dass GMES von möglichen Anwendern noch nicht angemessen wahrgenommen wird:
 - Bedeutung und Vorteile in Bay. Verwaltung nicht ausreichend bekannt
- Für GMES werden 3,2 Milliarden Euro in Infrastruktur investiert aber nur 107 Millionen Euro in operative Dienste
- StMWIVT wollte mit dieser Studie stärker auf Nutzerbedürfnisse zielen.

Ziele

Konkrete Ziele der Studie:

- GMES Nutzenpotenzial für staatliche Aufgaben aufzeigen
- Identifikation und Spezifikation von Verfahren auf Grundlage von zukünftigen GMES-Angeboten
 - Identifikation eingesetzter EO Verfahren in bayerischen Behörden
 - Analyse und Bewertung der Verfahren hinsichtlich Verbesserungspotential durch GMES
 - Identifikation konventioneller (nicht EO) Verfahren, die sich durch GMES
 Verfahren ersetzen oder ergänzen lassen
 - Mehrwert gegenüber konventionellen Verfahren
 - Definition von möglichen Pilotprojekten
- Ergebnisse funktional umsetzbar

GMES

con terra

GMES (Global Monitoring for Environment and Security)

 Europäische Initiative für Erdbeobachtung und Dienstleistungen der Geoinformation

GMES Infrastruktur:

- Sentinel Satelliten (ab 2013)
- Contributing Missions (Satellitendaten)
- In-Situ Daten

GMES Kerndienste:

- Landüberwachung
- Überwachung der Meeresumwelt
- Überwachung der Atmosphäre
- Überwachung des Klimawandels
- Katastrophen- und Krisenmanagement
- Sicherheit

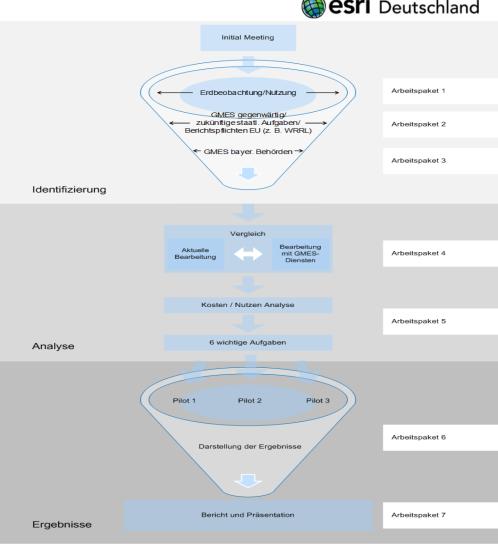
GMES Sentinels

5 Weltraummissionen - "Sentinels" (Wächter) – für GMES

s<u>con terra</u>

- Sentinel-1 (ab 2013)
 - Radar-Aufnahmen (SAR, C-Band (Kontinuität zu: ERS und Envisat).
 - Auflösung bis zu 5m x 5m bei 80 km Schwadbreite
- Sentinel-2 ("Superspectral", ab 2013):
 - Hochauflösende, multispektrale Aufnahmen im optischen Bereich und nahen IR (Kontinuität zu Landsat und SPO1)
 - 13 Spektralkanäle, bis zu 10m Auflösung, 290km Schwadbreite
- Sentinel-3 ("Ocean", ab 2013):
 - Meeresüberwachung
 - Multispektrale Aufnahmen mit 500 bis 1000 m Bodenauflösung
- Sentinel-4 ("Atmosphere", ab 2017)
 - Überwachung der Atmosphäre (Auflösung 8 km)
- Sentinel-5 ("Atmosphere", ab 2019)

Methodik


- Die Untersuchung erfolgte auf Basis bereits durchgeführter Studien:
 - Geodatenbedarfserhebung des Bundes
 - Geodaten der Bundesverwaltung
- Identifikation von Fachexperten fortlaufend
- Kommunikation mit internen und externen Experten mit Fokus auf die Entwicklung von GMES Verfahren und Pilotprojekten
- Identifikation Bayerischer Staatsministerien
 - Identifikation von möglichst zahlreichen Verfahren in Abstimmung mit Vertretern der jeweiligen Ministerien

Methodik

esri Deutschland

- Strukturierte Prozessanalyse für besonders umsetzungsrelevante Verfahren mit folgenden Inhalten:
 - Kurze Beschreibung des Problems Darstellung der Kerncharakteristik
 - Genaue Spezifikation des Ziels sowie etwaiger Teil-Ziele
 - Konventionelles Vorgehen zur Erreichung der (Teil-)Ziele
 - Spezifikation GMES Verfahren
 - Kurze Beschreibung der GME basierten Lösung
 - Datengrundlage
- Wirtschaftlichkeitsanalyse durch Identifikation von Kenngrößen (Key Performance Indicators (KPI)), die das qualitative Leistungsspektrum Anwendungen beschreiben
 - KPIs lassen sich gruppieren zu:
 - Oualität
 - Strategie
 - Externer Nutzen

Ergebnisse

con terra

Ergebnisse

- 23 GMES-relevante Verfahren innerhalb der bayerischen Behörden
 - Davon 17 Kurzbeschreibungen
 - 6 Detailanalysen
- Selektionskriterien für die Verfahren:
 - Datenqualität der GMES Dienste
 - Relevanz innerhalb der Behörde
 - Unterstützung durch Fachexperten
 - Operative Umsetzbarkeit
- Jeweils aus folgenden Ministerien
 - StMWIVT: Drei Verfahren, davon zwei Detailanalysen
 - StMUG: Drei Verfahren, davon eine Detailanalyse
 - StMELF: 15 Verfahren, davon zwei Detailanalysen
 - StMI: Zwei Verfahren

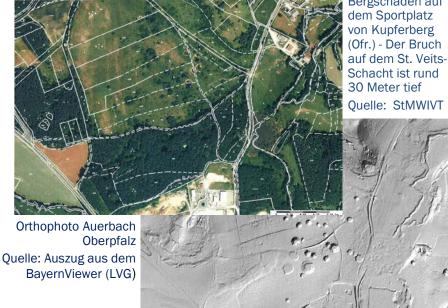
Verfahrensübersicht

#	Verfahren	Analysetiefe	Pilotprojekt			
StM	StMWIVT					
1	Subsidenzmonitoring im Altbergbau	Detailanalyse (KPI)	х			
2	Georisiken (Muren/Felsstürze)	Detailanalyse (KPI)	х			
3	<u>Subsidenzmonitoring</u> infolge von	Kurzbeschreibung				
	Geothermieprojekten					
StM	UG					
4	Futtermittelsicherheit	Detailanalyse (KPI)				
5	Landnutzungsänderung	Kurzbeschreibung				
6	Luftqualität	Kurzbeschreibung				
StM	ELF		•			
7	Grünfuttermittelertragsabschätzung	Detailanalyse (KPI)	х			
8	Unterstützung der Waldzustandserhebung durch	Detailanalyse (KPI)	х			
	die flächenhafte Erfassung von					
	Vitalitätsveränderungen					
9	Erosionsmonitoring	Detailanalyse				
10	Monitoring Gewässerschutz	Kurzbeschreibung				
11	Bundeswaldinventur	Kurzbeschreibung				
12	Waldtypen	Kurzbeschreibung				
13	Monitoring der Binnengewässer	Kurzbeschreibung				
14	Identifikation von Moorflächen	Kurzbeschreibung				
15	Fruchtfolgeüberprüfung	Kurzbeschreibung				
16	Pflanzenschutz	Kurzbeschreibung				
17	Agrarstrukturen	Kurzbeschreibung				
18	Düngung (Stickstoff)	Kurzbeschreibung				
19	Güllemonitoring	Kurzbeschreibung				
20	Bewässerte Flächen	Kurzbeschreibung				
21	Solarflächen	Kurzbeschreibung				
StM	<u>.</u>		•			
22	Großveranstaltungen	Kurzbeschreibung				
23	GMES Unterstützung für BOS Funk	Kurzbeschreibung				

Auswahlkriterien für Pilotverfahren

KPI / Bewertung für das Verfahren
Qualitativer und organisitorischer Nutzen
Relevanz häufiger Datenaktualisierung ?
Ergebnisbereitstellung verbessert?
Ergibt sich auf Basis von GMES eine neue Anwendung?
Nutzen durch Automation bestehender Anwendungen ?
Ergeben sich Kostenreduktionen ?
Flächendeckendes Monitoring relevant?
Synergieeffekte mit anderen Anwendungsfällen ?
Entscheidungsunterstützung verbessert ?
Strategischer Nutzen
Neue e-Government Dienstleistung?
Werden zukünftige Vorschriften, Gesetze und EU-Verordnungen erfüllt?
Wettbewerbsvorteil gegenüber anderen Bundesländern und im europäischen Vergleich?
Externer Nutzen
Ist ein Datenaustausch für externe Nutzer relevant ?
Einheitlicher Raumbezug?
Geringere Aufbereitungszeit für das Verfahren ?
Nachvollziehbarkeit / Transparenz verbessert ?

Pilotverfahren 1 - Altbergbau (StMWIVT)

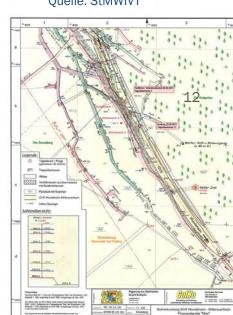


con terra

Problemstellung:

- Bergämter in Bayern für Gefahrenabwehr im Altbergbau zus
- Schätzungsweise ca. 4000 Altbergwerke in Bayern
- gelegentlich Probleme durch Absenkungen der Tagesm pro Jahr) im Bereich aufgelasse-
- flächendeckende Überwachung aus personellen und Kostengründen nicht möglich
 - Laserscanning (Digitales Gelände-Modell, 1m Auflösung, des LVG)
 kosten 80 € / qkm
 - Daten in den letzten Jahren einmal gewonnen, keine Aktualisierung in absehbarer Zeit
 - manuelle Auswertung der aus 1 erzeugten Schummerungsdauert ca 1h

Pilotverfahren 1 - Altbergbau (StMWIVT)



con•terra

Vermessungsarbeiten an einem Altbergbau in Mainstockheim (Ufr.) Ouelle: StMWIVT

- Ziel:
 - flächendeckendes Monitoring von Höhenveränderungen für ganz Bayern
 - besonders im Bereich Verkehrswege / Siedlungsgebiete
 - Erfassung der Richtungen (hoch/runter) und der Höhen der Bewegungen in den betroffenen Gebieten
 - Erfassung der Geschwindigkeiten von Höhenänderungen (in mm bis m / Jahr)
- Konventionelles Vorgehen:
 - Bergschäden werden i. d. R. durch andere Behörden oder Bürger zur Kenntnis gebracht
 - Gebiete werden zur Gefahrenerkundung begangen
 - Schadensbeurteilung: durch aufwendige Vermessungen
 - Anschließend: geotechnisch-geologische Bewertung.
 - Ergebnisse in Form von Berichten (z.B. geotechnischmarkscheiderische Bewertung (Abb.) und Karten
 - Anschließend werden Maßnahmen zur Abwehr von Gefahren für die öffentliche Sicherheit getroffen

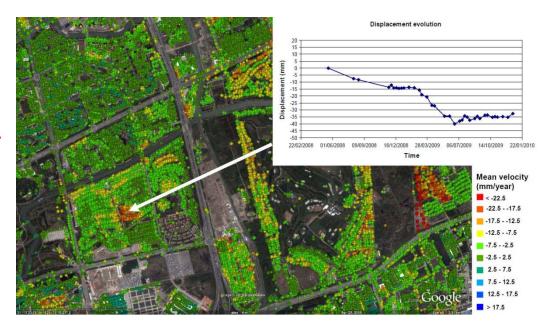
Pilotverfahren 1 – Altbergbau (StMWIVT)

esri Deutschland

GMES Verfahren

con terra

 Auf Basis Radar Interferometrie: Bestimmung geometrischer Änderungen der Erdoberfläche zwischen Aufnahmepaaren in zeitlicher Abfolge.


 Über längere Zeiträume gemessen, lassen sich daraus mittlere Beträge von Absenkungen/Ansteigen und Geschwindigkeiten ermitteln.

Bestimmt wird Deformationsbewegung an Punkten, die als stabile Reflek-toren

wirken (z.B. Fels)

 Grundsätzlich: zeitliche Abfolge der Radaraufnahmen an Dynamik der Phänomene anpassen

- mind. 2 Datensätze /Mon über Monate /Jahre
- Methodenverifizierung durch vermessene, statische Radarreflektoren
- hoher Automatisierungsgrad des Prozesses durch COTS umsetzbar

Pilotverfahren 1 - Altbergbau (StMWIVT)

Daten: Verwendbare satellitengestützte Radarsysteme

Mission	Beschreibung	Spezifikation	Aufnahmeintervall (interferometrisch)			
Zielsystem im GMES-Rahmen						
Sentinel-1 (ESA)	Zwei-Satellitenkonstellation in finaler Ausbaustufe; Sentinel-1a Launch geplant 2013, Sentinel-1b Launch geplant 2014/2015 (TBD); Präzise Orbitpositionierung	1. Stripmap, 80km /	C-Band Radarsystem mit relevanten Aufnahmemodi: Aufnahmestreifen, 5m x 5m räumliche Auflösung Wide Swath, 250km Aufnahmestreifen, 5mx20m	12 Tage ein Satellit 6 Tage zwei Satelliten		
Contributing Missions:						
CosmoSkymed (Italien)	operationell verfügbar; 4-Satelliten Konstellation in Betrieb seit 2007; Konstellation wird fortgeführt im 4- Satellitenbetrieb über 2020 hinaus; sehr präzise Orbitpositionierung	 Stripmap, 40km Spotlight, 10km 	-Band Radarsystem mit relevanten Aufnahmemodi: Aufnahmestreifen, 3m x 3m räumliche Auflösung Aufnahmestreifen, 1m x 1m räumliche Auflösung canSAR, 100km Aufnahmestreifen, 16mx16m	variabel zwischen 1, 3, 4, 7, 8, 9, 11 Tagen		
TerraSAR-X (Deutschland)	operationell verfügbar; Ein-Satelliten System; Höchste Präzision der Orbitpositionierung	 Stripmap, 30km Spotlight, 10km 	-Band Radarsystem mit relevanten Aufnahmemodi: Aufnahmestreifen, 3m x 3m räumliche Auflösung Aufnahmestreifen, 1m x 1m räumliche Auflösung Aufnahmestreifen, 18mx18m Auflösung	fix bei 11 Tagen		
Radarsat-2 (Canada)	operationell verfügbar; Ein-Satelliten System; Präzise Orbitpositionierung	 Fine, 50km Aufr Spotlight, 18km Standard, 100kr 	F-Band Radarsystem mit relevanten Aufnahmemodi: nahmestreifen, 5.2m x 7.7m räumliche Auflösung Aufnahmestreifen, 1.6m x 0.8m räumliche Auflösung m Aufnahmestreifen, 9m x 7.7m räumliche Auflösung ufnahmestreifen, 13.5mx7.7m Auflösung			

- Aufnahmen im "Standardmodus" der Radarsysteme (3 5 m)
- zeitliche Abfolge von 2 bis 4 pro Monat, für ganz Bayern
- über einen Zeitraum von mehreren Monaten oder Jahren
- Kann im Falle von Extremereignissen zeitlich verdichtet werden (< 1Woche)

Pilotverfahren 1 – Altbergbau (StMWIVT)

KPI / Bewertung für das Verfahren	Gering	Mittel	Hoch		
Qualitativer und organ. Nutzen					
Relevanz häufiger Datenaktualisierung			X		
Ergebnisbereitstellung verbessert?			X		
Ergibt sich auf Basis von GMES eine neue Anwendung?			X		
Nutzen durch Automation bestehender Anwendungen?			Х		
Ergeben sich Kostenreduktionen?			Х		
Flächendeckendes Monitoring relevant?			Х		
Synergieeffekte mit anderen Anwendungsfällen?			Х		
Entscheidungsunterstützung verbessert?			Х		
Strategischer Nutzen		•	·		
Neue e-Government Dienstleistung?	Х				
Werden zukünftige Vorschriften, Gesetze und EU-		n.b.			
Verordnungen erfüllt ?					
Wettbewerbsvorteil gegenüber anderen Bundesländern		X			
und im europäischen Vergleich					
Externer Nutzen					
Ist ein Datenaustausch für externe Nutzer relevant?			X		
Einheitlicher Raumbezug?			X		
Geringere Aufbereitungszeit für das Verfahren?			Х		
Nachvollziehbarkeit / Transparenz verbessert ?			Х		

Pilotverfahren 2 - Futtermittelsicherheit (StMUG, LGL) GAFAG

- Problemstellung:
 - Eine Hauptaufgabe der für die Futtermittelüberwachung zuständigen Behörden in Bayern ist die Gewährleistung der Futtermittelsicherheit
 - Kontext: vorbeugender Verbraucherschutz bei tierischen Lebensmittel
 - Hierfür werden nach bestimmten risikoorientierten Kriterien Futtermittel (Grünfutter) beprobt und auf bestimmte Kontaminanten untersucht.
 - Für risiko- und zielorientierte Probenahme und Untersuchung stellt die Identifizierung von durch Überschwemmungen oder durch atmosphärische Einträge (z.B. Staub) belastete Flächen eine entscheidende Grundlage dar.

Konventionelles Vorgehen:

Identifikation belasteter Flächen über Erfahrungswerte und Daumenregeln

Quelle: LGL

Pilotverfahren 2 - Futtermittelsicherheit (StMUG, LGL) GAFAG

Ziel:

Automatische Detektion von potentiell kontaminierten Flächen (z.B. staubgetragene Kontamination mit Rauchfahnen; Überschwemmungsgebiete)

Verfahren

- auf Basis GMES Daten automatisch Gebiete detektieren, die von atmosphärischen Einträgen oder durch Überschwemmung betroffen sind
- Einbeziehung von Klimadaten (z.B. Niederschläge) um Grad der Kontamination festzulegen
- Einbeziehung der aktuellen Flächennutzung
- flächennutzungsspezifische Auswertung zur Festlegung des Zeitpunkts der Probenahme (z.B. Gras vs. Getreideaufwuchs)
- Verschneidung mit Flurstücksdaten zur Definition der zu beprobenden Flurstücke
- Ergebnisbereitstellung durch analoge Kartenform oder digitaler MapService

Pilotverfahren 3 - Grünfuttermittelertragsabschätzung (StMELF, LFL)

Problemstellung:

- Energiewende und Eiweißoffensive (Erhöhung des produzierten Eiweißanteils) in
 Bayern erfordern präzise Kenntnis der erzielten Ernteerträge von Grünfuttermitteln
- bisherigen ungenauen Verfahren führen zu Schätzfehlern von bis zu 100%

Ziel:

- möglichst exakte, regionalisierte Ertragsschätzung von Grünland
- Tagesgenaue Ermittlung der Schnittzeitpunkte von Grünland (Wiesen) sowie Errechnung des Aufwuchses zwischen zwei Schnitten mittels etablierter Modellrechnungen
- Neue weiterführende Verfahren sollen sogar den Aufwuchs selbst per Radarsatelliten bestimmen oder Aussagen über den Artenbestand des Grünlandes ermöglichen.

Quelle: LfL

Pilotverfahren 3 - Grünfuttermittelertragsabschätzung (StMELF, LFL)

Verfahren:

- Ermittlung der Schnittzeitpunkte auf Basis von GMES-Radardaten (Sentinel-1)
 - Unterschiede der Oberflächeneigenschaften zwischen Radarbildern (vor und nach dem Schnitt) durch Land Use Change Mapping Verfahren bestimmen
 - Aussage über eine Zustandsänderung der speziellen Grünlandfläche treffen (geschnitten zwischen den beiden Aufnahmezeitpunkten)
 - Zuverlässige, wetterunabhängige Überwachung der Grünflächen
- Ermittlung von Ertrag und Qualit\u00e4t der Wuchsphasen zwischen den Schnitten durch Ertragsmodelle
 - Vgl. z.B. Universität Kiel (Prof. Taube)
 - basierend auf Kombination von Witterungsdaten und Bestandsart
- Mögliches Alternativverfahren (Forschung): Ermittlung der Biomasse zwischen den Schnitten über Radardaten
- GMES-basierte Bestandserkennung zunächst optional
- Hohe Komplexität
- Entwicklung neuer Verfahren erforderlich (Forschung)

Pilotverfahren 4 – Vitalitätsentwicklung von Wald (StMELF, LWF)

- Problemstellung:
 - Waldzustandsbericht
 - jährlich vom Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft herausgegeben
 - Ergebnisse des forstlichen Monitorings des Zustandes d Waldbäume in D
 - "Vor-Ort" Untersuchungen zur Vitalität (zum Zustand) einzelner Bäume
 - geschehen auf Basis von Stichproben, deren Aussagen auf die Grundgesamtheit hochgerechnet werden
 - Nachteil:
 - keine konkreten Aussagen über die Vitalität bestimmter Waldgebiete
 - es fehlen
 Untersuchungen, die "in die Fläche gehen"
 - ist aber notwendig, um auf Vegetationsstress möglichst schnell reagieren zu können.

Pilotverfahren 4 – Vitalitätsentwicklung von Wald (StMELF, LWF)

- Ziel:
 - Mit GMES-Daten sind Änderungen von Flächen über längere Zeitreihen der Aufnahmen erfaßbar
 - Methodik: Detektion der relativen Unterschiede gleicher Objekte über die Zeit.
 - Mit einem entspr Verfahren könnte man für Flächen z.B. eine Art Frühwarnsystem etablieren:
 - Zustandsverschlechterung bestimmter Gebiete
 - Flächenhafte Änderungen könnten auch zur Waldzustandserhebung beitragen.
 - Vor-Ort-Begehungen können mit derartigen Ergebnissen als Input gezielter durchgeführt werden.

Borkenkäfernest Quelle: Waldwissen.net, Autor Gerhard Waas, Redaktion LWF Bayern

Verfahren

 auf Basis der GMES Kerndienste sowie zusätzlicher sehr hoch und hochauflösender Satellitendaten werden Veränderungen der Vitalität im Rahmen von Zeitreihen detektiert

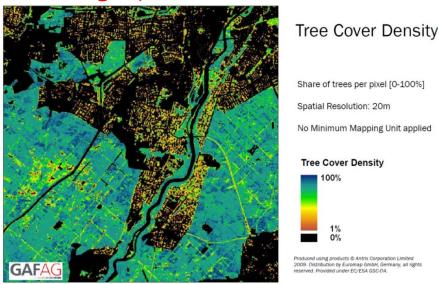

Pilotverfahren 4 - Vitalitätsentwicklung von Wald (StMELF, LWF)

Abb.: %-Anteil der baumbedeckten Fläche je Pixel

- con terra
- Kerndienste basieren primär auf IRS LISS (20m Auflösung) Daten
- Abdeckungslücken: ergänzt mit SPOT Daten oder RapidEye (5m)
- für alle Kerndienste gibt es mehrere Abdeckungen pro Jahr
- zukünftige Kerndienste basieren primär auf Sentinel 2 Daten
- Ihre weitere Veredelung zu Vitalitätsprodukten erfordert Akquisition zusätzlicher EO Daten
- Daraus werden Kartenprodukte erzeugt, die tendenzielle Verbesserungen / Verschlechterungen der Vitalität von Einzelbäumen oder Baumgruppen mit Zeit- und Flächenbezug anzeigen.

GMES Forstdienst "Tree Cover Density (Quelle: GAF AG)

 Zur Erhöhung der Zuverlässigkeit der Ergebnisse müssen verschiedenste Einflussfaktoren (z.B. Einfluss der Atmosphäre, jahreszeitliche phänologische Veränderungen, Topographie, Schattenanteile) in der Prozesskette berücksichtigt werden

22

Resümee

- Engagierte Unterstützung der Studie in bayerischen Behörden
- Großes Potential 23 Verfahren mit GMES Relevanz identifiziert
 - davon 4 kurzfristig operativ umsetzbar
 - Vorteile gegenüber etablierten Verfahren (Qualität, Kosten)
 - Contributing Missions und In-Situ Daten derzeit bereits verfügbar
- Anwender erwarten nächste Schritte
- Kurzfristige Umsetzung der Pilotverfahren möglich:
 - Experten der bay. Behörden sind "im Thema"
 - -> Zunächst detaillierte Projektspezifikation (Technologie, Kosten, Zeitplan)
 - Entwicklung / Anpassung der verwendeten Verfahren
 - Umsetzung für Testgebiete
 - Anschließend Operationalisierung